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Risk Aggregation and Diversification
@ A key issue in capital adequacy and solvency is to aggregate risks

(by summing capital requirements?) and potentially account for
diversification (to reduce the total capital?)
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Risk Aggregation and Diversification

@ A key issue in capital adequacy and solvency is to aggregate risks
(by summing capital requirements?) and potentially account for
diversification (to reduce the total capital?)

@ Using the standard deviation to measure the risk of aggregating Xi
and Xo with standard deviation std(X;),

std(X) + Xo) = \/std(X0)? + std(Xa)? + 2pstd(Xy)std(X2)
If p <1, there are “diversification benefits":

std(X1 + X2) < std(X1) + std(Xz)
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Risk Aggregation and Diversification

@ A key issue in capital adequacy and solvency is to aggregate risks
(by summing capital requirements?) and potentially account for
diversification (to reduce the total capital?)

@ Using the standard deviation to measure the risk of aggregating Xi
and Xo with standard deviation std(X;),

std(X) + Xo) = \/std(X0)? + std(Xa)? + 2pstd(Xy)std(X2)
If p <1, there are “diversification benefits":
std(X1 + X2) < std(X1) + std(Xz)

@ This is not the case for instance for Value-at-Risk (but used in
regulatory capital requirements).
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Motivation on VaR aggregation with dependence uncertainty

Full information on marginal distributions:
X~ F

_|_

Full Information on dependence:
(known copula)

=

VaRgq (X1 + X2 + ... + Xy) can be computed!
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Motivation on VaR aggregation with dependence uncertainty

Full information on marginal distributions:
X~ F;

_l’_

Partial or no Information on dependence:
(incomplete information on copula)

=
VaRg (X1 + X2 + ... + Xy) cannot be computed!
Only a range of possible values for VaRq (X1 + X2 + ... + Xy).
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Objectives and Findings

o Model uncertainty on the risk assessment of an aggregate portfolio:
the sum of d dependent risks.

» Given all information available in the market, what can we say about
the maximum and minimum possible values of a given risk measure of
a portfolio?
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Objectives and Findings

o Model uncertainty on the risk assessment of an aggregate portfolio:
the sum of d dependent risks.
» Given all information available in the market, what can we say about
the maximum and minimum possible values of a given risk measure of
a portfolio?
@ Implications:
» Current VaR based regulation is subject to high model risk, even

@ if one knows the multivariate distribution “almost completely”
or
o if one knows average pairwise correlation.
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Model Risk

@ Goal: Assess the risk of a portfolio sum S = Zf‘lzl X;.

@ Choose a risk measure p(-): variance, Value-at-Risk...

@ 'Fit" a multivariate distribution for (X1, X2, ..., X4) and compute p(S)
© How about model risk? How wrong can we be?
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Model Risk

@ Goal: Assess the risk of a portfolio sum S = Z:'j:l X;.
@ Choose a risk measure p(-): variance, Value-at-Risk...
@ 'Fit" a multivariate distribution for (X1, X2, ..., X4) and compute p(S)
© How about model risk? How wrong can we be?
Assume p(S) = var(S),

sl (S5 ). s o ()

where the bounds are taken over all other (joint distributions of) random
vectors (X1, X2, ..., Xy) that “agree” with the available information F
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Aggregation with dependence uncertainty:
Example - Credit Risk

» Marginals known
» Dependence fully unknown

Consider a portfolio of 10,000 loans all having a default probability
p = 0.049.

[ [ Mm VaR, | Max VaR,
4% 100%

Portfolio models are subject to significant model uncertainty (defaults are
rare and correlated events).
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Aggregation with dependence uncertainty:
Example - Credit Risk

» Marginals known
» Dependence fully unknown

Consider a portfolio of 10,000 loans all having a default probability
p = 0.049. The default correlation is p = 0.0157 (for KMV).

H KMV VaR, H Min VaRq Max VaR,
qg=0.95 10.1% 0% 98%
g = 0.995 15.1% 4.4% 100%

Portfolio models are subject to significant model uncertainty (defaults are
rare and correlated events).

Using dependence information is crucial to try to get more “reasonable”
bounds.
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Outline of the Talk

Part 1: Bounds on Variance

e With full dependence uncertainty
e With partial dependence information on a subset
Part 2: Bounds on Value-at-Risk

e With 2 risks and full dependence uncertainty

e With d risks and full dependence uncertainty

e With partial dependence information on a subset
Part 3: Bounds on Value-at-Risk

e With 2 risks and information on pairwise correlation

e With d risks and information on average correlation
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Part |

Bounds on variance
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Risk Aggregation and full dependence uncertainty

Marginals known:
Dependence fully unknown

In two dimensions d = 2, assessing model risk on variance is linked to
the Fréchet-Hoeffding bounds

var(F7H(U) + Fy Y (1= U)) < var(Xy + X2) < var(FH(U) + Fy H(U))
Maximum variance is obtained for the comonotonic scenario:
var(X1 + Xo + ... + Xq) < var(F;H(U) + F H(U) + ... + F HU))

Minimum variance: A challenging problem in d > 3 dimensions

o Wang and Wang (2011, JMVA): concept of complete mixability
o Puccetti and Riischendorf (2012): algorithm (RA) useful to
approximate the minimum variance.
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Bounds on variance

Analytical Bounds on Standard Deviation

Consider d risks X; with standard deviation o;

0<stdXi+Xo+ ..+ Xy)<o1+02+..+04.

Example with 20 normal N(0,1)
0< Std(Xl +Xo+ ...+ Xgo) < 20,

in this case, both bounds are sharp and too wide for practical use!
THUS: Incorporate information on dependence.

Carole Bernard SAA - AFIR 2021 August 2021 14 / 45



lllustration with 2 risks with marginals N(0,1)
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lllustration

with 2 risks with marginals N(0,1)
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Assumption: Independence on F = ﬂ {98 < Xk < q1-5}-
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Our assumptions on the cdf of (X1, Xa, ..., Xy)

F C RY (“trusted” or “fixed” area)
U =RI\F (“untrusted").
We assume that we know:

(i) the marginal distribution F; of X; on R for i =1,2,...,d,
(ii) the distribution of (X1, X2, ..., Xg) | {(X1, Xa, ..., X4) € F}.
(i) pri= P ((X1, Xa, ..., Xq) € F).

» When only marginals are known: &/ = R and F = .

» Our Goal: Find bounds on p(S) := p(X; + ... + Xy) when
(X1, ..., Xq) satisfy (i), (ii) and (iii).
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Example d = 20 risks N(0,1)

» (Xi,...,X20) independent N(0,1) on

F = [qﬁ7 ql*ﬁ]d - Rd

pPr = P((X17 "'7X20) € 'F)

(for some 3 < 50%) where g,: y-quantile of N(0,1).

» (3 = 0%: no uncertainty (20 independent N(0,1)).
» 3 =50%: full uncertainty.

U=10 U="R?
F=lag,q1-5]" | B=0% B =50%
»=10 447 (0, 20)

Carole Bernard

SAA - AFIR 2021

August 2021

18 / 45



» (Xi,...,X20) independent N(0,1) on

Example d = 20 risks N(0,1)

F = [qﬁ7 ql*ﬁ]d - Rd

pr = P((Xl, ...,XQO) S f)

(for some 3 < 50%) where g,: y-quantile of N(0,1)

» (3 = 0%: no uncertainty (20 independent N(0,1))

» 3 =50%: full uncertainty

U=0 | pr~98% pr ~ 82% U=R4
F=lags,q1-p | B=0% | 3=0.05% | B=05% | B=50%
p=0 447 | (44,565) | (3.89,10.6) | (0, 20)

Model risk on the volatility of a portfolio is reduced a lot by
incorporating information on dependence!
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Information on the joint distribution

e Can come from a fitted model
e Can come from experts’ opinions

e Dependence “known" on specific scenarios
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lllustration with marginals N(0,1)

2
JF1 =contour of MVN at 3 F = U {Xk > qp}Ufl
k=1
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Part Il

Bounds on Value-at-Risk
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VaR aggregation with dependence uncertainty
Our findings

@ Maximum Value-at-Risk is not caused by the comonotonic scenario.

@ Maximum Value-at-Risk is achieved when the variance is minimum in
the tail. The RA is then used in the tails only.

@ Bounds on Value-at-Risk at high confidence level stay wide even when
the trusted area covers 98% of the space!
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Risk Aggregation and full dependence uncertainty
Literature review

Marginals known
Dependence fully unknown (too wide bounds, all info. ignored)

Explicit sharp (attainable) bounds
o n =2 (Makarov (1981), Riischendorf (1982))
o Riischendorf & Uckelmann (1991), Denuit, Genest & Marceau (1999),
Embrechts & Puccetti (2006),

A challenging problem in n > 3 dimensions

Approximate sharp bounds

o Puccetti and Riischendorf (2012): algorithm (RA) useful to
approximate the minimum variance.

o Embrechts, Puccetti, Riischendorf (2013): algorithm (RA) to find
bounds on VaR
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“Riskiest” Dependence: maximum VaR, in 2 dims?

If X1 and X, are U(0,1) comonotonic, then
VaR,(5¢) = VaR,(X1) + VaR,(X2) = 2q.

1
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“Riskiest” Dependence: maximum VaR, in 2 dims?

If X1 and X, are U(0,1) comonotonic, then
VaR,(5¢) = VaR,(X1) + VaR,(X2) = 2q.

1

0 a 1

Note that TVaR,(S¢) — 22 20

=1+ g (which is also MAX TVaR)
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“Riskiest” Dependence: maximum VaR, in 2 dims

If X1 and X5 are U(0,1) and antimonotonic in the tail, then
VaRq(5*) = 1+ g (which is maximum possible).

1

VaRqe(5") =14 q > VaRy(5°) =2q

= to maximize VaRg, the idea is to change the comonotonic dependence
such that the sum is constant in the tail
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VaR at level g of the comonotonic sum w.r.t. g
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VaR at level g of the comonotonic sum w.r.t. g

1 1
where TVaR (Expected shortfall): TVaRq(X) = 1/ VaR,(X)du,
q

g€ (0,1)
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Riskiest Dependence Structure VaR at level g
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Analytic expressions (not sharp)

Analytical Unconstrained Bounds with X; ~ F;

A = LTVaR,(5°) < VaRg [X1 + X2 + ... + X»] < B = TVaR,(5°)

Approximate sharp bounds:
Embrechts, Puccetti, Riischendorf (2013): algorithm (RA) to find bounds
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Numerical Results for VaR, 20 risks N(0,1)

When marginal distributions are given,
@ What is the maximum Value-at-Risk?
@ What is the minimum Value-at-Risk?
e A portfolio of 20 risks normally distributed N(0,1). Bounds on VaR,
(by the rearrangement algorithm applied on each tail)
g=95% | (-2.17,413) |
9=99.95% | (-0.035,71.1) |

» Very wide bounds
» All dependence information ignored

Idea: add information on dependence from a fitted model or from
experts’ opinions

Information on a subset

VaR bounds when the joint distribution of (Xi, X2, ..., X;) is known on a
subset of the sample space.

™ = = — wyor?
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Our assumptions on the cdf of (X, Xa, ..., X,)

F C R" (“trusted” or “fixed" area)
U =R"™\F (“untrusted”).
We assume that we know:

(i) the marginal distribution F; of X; on R for i =1,2,...,n,
(i) the distribution of (X1, X2, ..., Xp) [{(X1, X2, ..., X) € F}.
(”I) P((X17X27 ---an) € f)

» Goal: Find bounds on VaR,(S) := VaRy(X; + ... + X;,) when
(X, ..., X,) satisfy (i), (ii) and (iii).
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Numerical Results, 20 correlated N(0,1) on F = [qg, g1—g]"

U=10 U=R"

F B =0% B =50%
9=95% 12,5 (-217,413)
9=995% | 196 | | | (-0.29,57.8) |
g=99.95% | 251 | | | (-0.035,71.1) |

@ U =0 : 20 correlated standard normal variables (p = 0.1).

V3R95% =125 VaR99.5% =19.6 V3R99.95% =251
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Numerical Results, 20 correlated N(0,1) on F = [qg, g1—g]"

u:(b pf%98% p,t%gz% UuU=R"
B=0% | SB=0.05% B=05% B =50%
q=95% 125 [ (122,133) [ (10.7,27.7) | (-2.17,413)
9=99.5% [ 196 [ (19.1,31.4)](169,57.8)] (-0.29,57.8) |
9=99.95% | 251 [ (242,71.1)[(215,71.1) ] (-0.035,671.1) |

@ U =0 : 20 correlated standard normal variables (p = 0.1).

V3R95% =125 VaR99.5% =19.6 V3R99_95% =251

» The risk for an underestimation of VaR is increasing in the

probability level used to assess the VaR.

» For VaR at high probability levels (g = 99.95%), despite all the
added information on dependence, the bounds are still wide!
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Regulation challenge

The Basel Committee (2013) insists that a desired objective of a
Solvency framework concerns comparability:

“Two banks with portfolios having identical risk profiles apply the
frameworks rules and arrive at the same amount of risk-weighted assets,
and two banks with different risk profiles should
produce risk numbers that are different proportionally
to the differences in risk”
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How does correlation impact Value-at-Risk bounds?

Carole Bernard 12 Corrado De Vecchi ! Steven Vanduffel !

1 Vrije Universiteit Brussel

2Grenoble Ecole de Management

August 2021
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Upper bound for VaR (X1 + X;)

Assume X; has marginal cdf F; and C denotes the copula for (X1, X2)

0(C, F1, F2)= Spearman'’s rho, Kendall's tau or Pearson correlation.

——=d
VaR, = sup VaRj(Xl + X2)
subject to X;j~ F;, j=1,2 (1)
C,F,FR)=d.

Unconstrained problem:

VaRg := sup VaR¥ (X1 + Xa)
subject to Xj~ F;, j=1,2.
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Upper bound for VaR (X; + X;): copulas

Given g € (0,1), consider the squares [0, g]? and [g, 1]°.

1 \ 1 \
0.8 f-mmemmmmmmmoemeoeas —- 0.8 f-mmmmmmmmmmnameme Foo

0.6

04

0.2

i o H
0 0.2 0.4 06 0.8 1 0 0.2 04 0.6 08 1

Figure: Supports of Cpi, (left) and Cpax (right) for g = 0.8.

Definition:

Given g € (0,1), let 0 be a measure of dependence (Kendall's tau,
Spearman’s rho or Pearson correlation), F; and F, two c.d.f, we define

5min - 6(Cmin7 F17 FZ)

5max - 6(Cmax, Fla FZ)

v

- = = — oyt
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Upper bound for VaR_ (X; 4 X): results

=4
VaR, = sup VaRj(Xl + X2)
subject to X;j~ F;, j=1,2
C,F,FR)=d.

Theorem:

Given g € (0,1), let 6 be a measure of dependence (Kendall’

Spearman’s rho or Pearson correlation), F; and F two c.d.f.
For every d € [0min, dmax] it holds that

s tau,

_d —_—
VaR, = VaR,. (4)
and the upper bound is attained.
Note d € [0min, dmax] = constraint is redundant
Carole Bernard SAA - AFIR 2021 August 2021 40 / 45



Upper bound for VaR_ (X; 4 X): results

e Fix § and d. If d € [6min, Omax], then M(d) = M.
@ [Omin, Omax] is €asy to compute.

@ for g > 0.95, [0min, Omax] almost covers the range of values for 4.

- = —corr max ,’/
corr min -7
0.5 -7
0 =
-0.5
1 . : : :
0 0.2 0.4 0.6 0.8 1

q
A: X1 ~ Gamma(2,3),
X ~ Lognormal(2,1),

Carole Bernard

SAA - AFIR 2021

— - —corr max ‘,,—"’

corr min -

05 e
-
L
.
0 P
p
V.
-0.5
1
0 0.2 0.4 0.6 0.8 1
q

B: X; ~ N(0,1),i =1,2.
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Interval [0min, Omax]

© 0min and §pmax are very easy to compute:

e Spearman's rho:

Pmin = —6CI (q — 1) —1 and Pmax — 1-— 2(1 — q)3

o Kendall’s tau:

Tmin = 74q (q - 1) —1 and Tmax = -2 (q - 1)2 + 1.

@ for g = 1, [Jmin, Omax] almost covers the range of values of §.

Table: 6=Spearman’s rho, range [—1,1].

q 6min 5max
95.0% || -0.715 0.999
99.0% | -0.941 0.999
99.5% | -0.970 0.999
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RVaR bounds with n risks

Average correlation: given a portfolio X = (X, ..., Xj,) , the average
correlation of X, acorr (X), is defined as

. corr(X;, X;)std(X;)std(X;
o () — S O X)stdX)std ()

ST std(X)std (%) )
Range Value-at-Risk:
1 g
RVaR, 3(X) = 5—04/04 VaR,(X)dv, 0 <a < f <1. (6)
Problems:
sup \ inf {RVaRa75(S) ‘ S = ZH:X,-, Xi ~ F,-}. (7)
i=1

sup\inf{RVaRa,B(S) ‘ S = ZX,-, Xi ~ F;, acorr (X) < d}. (8)

i=1
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RVaR bounds

© No dependence information: given X; ~ F;,
A(B) < RVaR, 5(S) < B(). (9)
@ Average correlation constraint: given X; ~ F; and acorr(X) < d,

I(8) < RVaRq 4(S) < u(a). (10)

@ Sharpness: tail mixability (sufficient).
@ VaR and TVaR bounds as special cases.

o If d > max(c(a), c(pB)), then I(B) = A(B) and u(a) = B(a) =
constraint is redundant.
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Conclusions

Pitfall to avoid:

e Knowledge of dependence measure (such as a correlation coefficient
or an average correlation) may not help to improve a risk measure
worst-case scenario.

With Value-at-Risk, only tail information helps. In the paper, we also show
that

e Knowledge (or realistic assumption) regarding tail dependence is more
effective.
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Thank you for listening !

THANK YOU

[-\(( ‘
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