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Risk Aggregation and Diversification

A key issue in capital adequacy and solvency is to aggregate risks
(by summing capital requirements?) and potentially account for
diversification (to reduce the total capital?)

Using the standard deviation to measure the risk of aggregating X1

and X2 with standard deviation std(Xi ),

std(X1 + X2) =
√
std(X1)2 + std(X2)2 + 2ρstd(X1)std(X2)

If ρ < 1, there are “diversification benefits”:

std(X1 + X2) < std(X1) + std(X2)

This is not the case for instance for Value-at-Risk (but used in
regulatory capital requirements).
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Motivation on VaR aggregation with dependence uncertainty

Full information on marginal distributions:
Xj ∼ Fj

+

Full Information on dependence:
(known copula)

⇒

VaRq (X1 + X2 + ...+ Xd) can be computed!
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Motivation on VaR aggregation with dependence uncertainty

Full information on marginal distributions:
Xj ∼ Fj

+

Partial or no Information on dependence:
(incomplete information on copula)

⇒

VaRq (X1 + X2 + ...+ Xd) cannot be computed!

Only a range of possible values for VaRq (X1 + X2 + ...+ Xd).
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Objectives and Findings

Model uncertainty on the risk assessment of an aggregate portfolio:
the sum of d dependent risks.

I Given all information available in the market, what can we say about
the maximum and minimum possible values of a given risk measure of
a portfolio?

Implications:
I Current VaR based regulation is subject to high model risk, even

if one knows the multivariate distribution “almost completely”
or
if one knows average pairwise correlation.
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Model Risk

1 Goal: Assess the risk of a portfolio sum S =
∑d

i=1 Xi .

2 Choose a risk measure ρ(·): variance, Value-at-Risk...

3 “Fit” a multivariate distribution for (X1,X2, ...,Xd) and compute ρ(S)

4 How about model risk? How wrong can we be?

Assume ρ(S) = var(S),

ρ+F := sup

{
var

(
d∑

i=1

Xi

)}
, ρ−F := inf

{
var

(
d∑

i=1

Xi

)}

where the bounds are taken over all other (joint distributions of) random
vectors (X1,X2, ...,Xd) that “agree” with the available information F
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Aggregation with dependence uncertainty:
Example - Credit Risk

I Marginals known

I Dependence fully unknown

Consider a portfolio of 10,000 loans all having a default probability
p = 0.049. The default correlation is ρ = 0.0157 (for KMV).

KMV VaRq Min VaRq Max VaRq

q = 0.95 10.1% 0% 98%
q = 0.995 15.1% 4.4% 100%

Portfolio models are subject to significant model uncertainty (defaults are
rare and correlated events).
Using dependence information is crucial to try to get more “reasonable”
bounds.
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Outline of the Talk

Part 1: Bounds on Variance

• With full dependence uncertainty

• With partial dependence information on a subset

Part 2: Bounds on Value-at-Risk

• With 2 risks and full dependence uncertainty

• With d risks and full dependence uncertainty

• With partial dependence information on a subset

Part 3: Bounds on Value-at-Risk

• With 2 risks and information on pairwise correlation

• With d risks and information on average correlation
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Part I

Bounds on variance
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Risk Aggregation and full dependence uncertainty

I Marginals known:

I Dependence fully unknown

I In two dimensions d = 2, assessing model risk on variance is linked to
the Fréchet-Hoeffding bounds

var(F−11 (U) +F−12 (1−U)) ≤ var(X1 +X2) ≤ var(F−11 (U) +F−12 (U))

I Maximum variance is obtained for the comonotonic scenario:

var(X1 + X2 + ...+ Xd) ≤ var(F−11 (U) + F−12 (U) + ...+ F−1d (U))

I Minimum variance: A challenging problem in d ≥ 3 dimensions

Wang and Wang (2011, JMVA): concept of complete mixability
Puccetti and Rüschendorf (2012): algorithm (RA) useful to
approximate the minimum variance.
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Bounds on variance

Analytical Bounds on Standard Deviation

Consider d risks Xi with standard deviation σi

0 ≤ std(X1 + X2 + ...+ Xd) ≤ σ1 + σ2 + ...+ σd .

Example with 20 normal N(0,1)

0 ≤ std(X1 + X2 + ...+ X20) ≤ 20,

in this case, both bounds are sharp and too wide for practical use!
THUS: Incorporate information on dependence.
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Illustration with 2 risks with marginals N(0,1)
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−3

−2

−1

0

1

2

3

X
1

X
2

Carole Bernard SAA - AFIR 2021 August 2021 15 / 45



Illustration with 2 risks with marginals N(0,1)
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Assumption: Independence on F =
2⋂

k=1

{qβ ≤ Xk ≤ q1−β} .
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Our assumptions on the cdf of (X1,X2, ...,Xd)

F ⊂ Rd (“trusted” or “fixed” area)
U =Rd\F (“untrusted”).
We assume that we know:

(i) the marginal distribution Fi of Xi on R for i = 1, 2, ..., d ,

(ii) the distribution of (X1,X2, ...,Xd) | {(X1,X2, ...,Xd) ∈ F}.
(iii) pf := P ((X1,X2, ...,Xd) ∈ F) .

I When only marginals are known: U = Rd and F = ∅.
I Our Goal: Find bounds on ρ(S) := ρ(X1 + ...+ Xd) when

(X1, ...,Xd) satisfy (i), (ii) and (iii).
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Example d = 20 risks N(0,1)

I (X1, ...,X20) independent N(0,1) on

F := [qβ, q1−β]d ⊂ Rd pf = P ((X1, ...,X20) ∈ F)

(for some β ≤ 50%) where qγ : γ-quantile of N(0,1).

I β = 0%: no uncertainty (20 independent N(0,1)).

I β = 50%: full uncertainty.

U = ∅ pf ≈ 98% pf ≈ 82% U = Rd

F = [qβ , q1−β]d β = 0% β = 0.05% β = 0.5% β = 50%
ρ = 0 4.47 (4.4 , 5.65) (3.89 , 10.6) (0 , 20)

Model risk on the volatility of a portfolio is reduced a lot by
incorporating information on dependence!
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Information on the joint distribution

• Can come from a fitted model

• Can come from experts’ opinions

• Dependence “known” on specific scenarios
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Illustration with marginals N(0,1)
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F1 =
2⋂

k=1

{qβ ≤ Xk ≤ q1−β}
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Illustration with marginals N(0,1)

F1 =contour of MVN at β F =
2⋃

k=1

{Xk > qp}
⋃
F1
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Part II

Bounds on Value-at-Risk
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VaR aggregation with dependence uncertainty
Our findings

Maximum Value-at-Risk is not caused by the comonotonic scenario.

Maximum Value-at-Risk is achieved when the variance is minimum in
the tail. The RA is then used in the tails only.

Bounds on Value-at-Risk at high confidence level stay wide even when
the trusted area covers 98% of the space!
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Risk Aggregation and full dependence uncertainty
Literature review

I Marginals known

I Dependence fully unknown (too wide bounds, all info. ignored)

I Explicit sharp (attainable) bounds

n = 2 (Makarov (1981), Rüschendorf (1982))
Rüschendorf & Uckelmann (1991), Denuit, Genest & Marceau (1999),
Embrechts & Puccetti (2006),

I A challenging problem in n ≥ 3 dimensions

I Approximate sharp bounds

Puccetti and Rüschendorf (2012): algorithm (RA) useful to
approximate the minimum variance.
Embrechts, Puccetti, Rüschendorf (2013): algorithm (RA) to find
bounds on VaR
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“Riskiest” Dependence: maximum VaRq in 2 dims?

If X1 and X2 are U(0,1) comonotonic, then

VaRq(Sc) = VaRq(X1) + VaRq(X2) = 2q.

q

q

Note that TVaRq(Sc) =

∫ 1
q 2pdp

1−q = 1 + q (which is also MAX TVaR)
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“Riskiest” Dependence: maximum VaRq in 2 dims

If X1 and X2 are U(0,1) and antimonotonic in the tail, then
VaRq(S∗) = 1 + q (which is maximum possible).

q

q

VaRq(S∗) = 1 + q > VaRq(Sc) = 2q

⇒ to maximize VaRq, the idea is to change the comonotonic dependence
such that the sum is constant in the tail
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VaR at level q of the comonotonic sum w.r.t. q

p 
1 q 

VaRq(Sc) 
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VaR at level q of the comonotonic sum w.r.t. q

p 
1 q 

VaRq(Sc) 

TVaRq(Sc) 

where TVaR (Expected shortfall):TVaRq(X ) =
1

1− q

∫ 1

q
VaRu(X )du,

q ∈ (0, 1)
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Riskiest Dependence Structure VaR at level q

p 
1 q 

VaRq(Sc) 

S* => VaRq(S*) =TVaRq(Sc)? 

Carole Bernard SAA - AFIR 2021 August 2021 30 / 45



Analytic expressions (not sharp)

Analytical Unconstrained Bounds with Xj ∼ Fj

A = LTVaRq(Sc) ≤ VaRq [X1 + X2 + ...+ Xn] ≤ B = TVaRq(Sc)

p 
1 q 

B:=TVaRq(Sc) 

A:=LTVaRq(Sc) 

Approximate sharp bounds:
Embrechts, Puccetti, Rüschendorf (2013): algorithm (RA) to find bounds
on VaRCarole Bernard SAA - AFIR 2021 August 2021 31 / 45



Numerical Results for VaR, 20 risks N(0, 1)

When marginal distributions are given,

What is the maximum Value-at-Risk?

What is the minimum Value-at-Risk?

A portfolio of 20 risks normally distributed N(0,1). Bounds on VaRq

(by the rearrangement algorithm applied on each tail)

q=95% ( -2.17 , 41.3 )

q=99.95% ( -0.035 , 71.1 )

I Very wide bounds

I All dependence information ignored

Idea: add information on dependence from a fitted model or from
experts’ opinions

Information on a subset

VaR bounds when the joint distribution of (X1,X2, ...,Xn) is known on a
subset of the sample space.
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Our assumptions on the cdf of (X1,X2, ...,Xn)

F ⊂ Rn (“trusted” or “fixed” area)
U =Rn\F (“untrusted”).
We assume that we know:

(i) the marginal distribution Fi of Xi on R for i = 1, 2, ..., n,

(ii) the distribution of (X1,X2, ...,Xn) | {(X1,X2, ...,Xn) ∈ F}.
(iii) P ((X1,X2, ...,Xn) ∈ F)

I Goal: Find bounds on VaRq(S) := VaRq(X1 + ...+ Xn) when
(X1, ...,Xn) satisfy (i), (ii) and (iii).
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Numerical Results, 20 correlated N(0, 1) on F = [qβ, q1−β]n

U = ∅ pf ≈ 98% pf ≈ 82% U = Rn

F β = 0% β = 0.05% β = 0.5% β = 50%
q=95% 12.5 ( 12.2 , 13.3 ) ( 10.7 , 27.7 ) ( -2.17 , 41.3 )

q=99.5% 19.6 ( 19.1 , 31.4 ) ( 16.9 , 57.8 ) ( -0.29 , 57.8 )

q=99.95% 25.1 ( -0.035 , 71.1 )

U = ∅ : 20 correlated standard normal variables (ρ = 0.1).

VaR95% = 12.5 VaR99.5% = 19.6 VaR99.95% = 25.1

ff The risk for an underestimation of VaR is increasing in the
probability level used to assess the VaR.

ff For VaR at high probability levels (q = 99.95%), despite all the
added information on dependence, the bounds are still wide!
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Regulation challenge

The Basel Committee (2013) insists that a desired objective of a
Solvency framework concerns comparability:

“Two banks with portfolios having identical risk profiles apply the
frameworks rules and arrive at the same amount of risk-weighted assets,

and two banks with different risk profiles should
produce risk numbers that are different proportionally

to the differences in risk”
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How does correlation impact Value-at-Risk bounds?

Carole Bernard 1, 2 Corrado De Vecchi 1 Steven Vanduffel 1

1 Vrije Universiteit Brussel

2Grenoble Ecole de Management

August 2021
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Upper bound for VaR+
q (X1 + X2)

Assume Xi has marginal cdf Fi and C denotes the copula for (X1,X2)

δ(C ,F1,F2)= Spearman’s rho, Kendall’s tau or Pearson correlation.

VaR
d
q := sup VaR+

q (X1 + X2)

subject to Xj ∼ Fj , j = 1, 2

δ(C ,F1,F2) = d .

(1)

Unconstrained problem:

VaRq := sup VaR+
q (X1 + X2)

subject to Xj ∼ Fj , j = 1, 2.
(2)
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Upper bound for VaR+
q (X1 + X2): copulas

Given q ∈ (0, 1), consider the squares [0, q]2 and [q, 1]2.
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Figure: Supports of Cmin (left) and Cmax (right) for q = 0.8.

Definition:

Given q ∈ (0, 1), let δ be a measure of dependence (Kendall’s tau,
Spearman’s rho or Pearson correlation), F1 and F2 two c.d.f, we define

δmin = δ(Cmin,F1,F2)

δmax = δ(Cmax ,F1,F2)
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Upper bound for VaR+
q (X1 + X2): results

VaR
d
q := sup VaR+

q (X1 + X2)

subject to Xj ∼ Fj , j = 1, 2

δ(C ,F1,F2) = d .

(3)

Theorem:

Given q ∈ (0, 1), let δ be a measure of dependence (Kendall’s tau,
Spearman’s rho or Pearson correlation), F1 and F2 two c.d.f.
For every d ∈ [δmin, δmax ] it holds that

VaR
d
q = VaRq. (4)

and the upper bound is attained.

Note d ∈ [δmin, δmax ] =⇒ constraint is redundant
Carole Bernard SAA - AFIR 2021 August 2021 40 / 45



Upper bound for VaR+
q (X1 + X2): results

Fix δ and d . If d ∈ [δmin, δmax ], then M(d) = M.

[δmin, δmax ] is easy to compute.

for q ≥ 0.95, [δmin, δmax ] almost covers the range of values for δ.

A: X1 ∼ Gamma(2, 3),
X2 ∼ Lognormal(2, 1), B: Xi ∼ N(0, 1), i = 1, 2.
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Interval [δmin, δmax ]

1 δmin and δmax are very easy to compute:

Spearman’s rho:

ρmin = −6q (q − 1)− 1 and ρmax = 1− 2(1− q)3.

Kendall’s tau:

τmin = −4q (q − 1)− 1 and τmax = −2 (q − 1)2 + 1.

2 for q ≈ 1, [δmin, δmax ] almost covers the range of values of δ.

Table: δ=Spearman’s rho, range [−1, 1].

q δmin δmax

95.0% -0.715 0.999

99.0% -0.941 0.999

99.5% -0.970 0.999
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RVaR bounds with n risks

Average correlation: given a portfolio X = (X1, ...,Xn) , the average
correlation of X, acorr (X), is defined as

acorr (X) =

∑
i 6=j corr(Xi ,Xj)std(Xi )std(Xj)∑n

i 6=j std(Xi )std(Xj)
. (5)

Range Value-at-Risk:

RVaRα,β(X ) =
1

β − α

∫ β

α
VaRγ(X )dγ, 0 < α < β < 1. (6)

Problems:

sup \ inf

{
RVaRα,β(S)

∣∣∣∣ S =
n∑

i=1

Xi , Xi ∼ Fi

}
. (7)

sup \ inf

{
RVaRα,β(S)

∣∣∣∣ S =
n∑

i=1

Xi , Xi ∼ Fi , acorr (X) ≤ d

}
. (8)
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RVaR bounds

1 No dependence information: given Xi ∼ Fi ,

A(β) ≤ RVaRα,β(S) ≤ B(α). (9)

2 Average correlation constraint: given Xi ∼ Fi and acorr(X) ≤ d ,

l(β) ≤ RVaRα,β(S) ≤ u(α). (10)

Sharpness: tail mixability (sufficient).

VaR and TVaR bounds as special cases.

If d ≥ max (c(α), c(β)), then l(β) = A(β) and u(α) = B(α) =⇒
constraint is redundant.
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Conclusions

Pitfall to avoid:

Knowledge of dependence measure (such as a correlation coefficient
or an average correlation) may not help to improve a risk measure
worst-case scenario.

With Value-at-Risk, only tail information helps. In the paper, we also show
that

Knowledge (or realistic assumption) regarding tail dependence is more
effective.
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Thank you for listening !
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